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Unsteady Flow of Viseoelastic: Fluids 
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Photo Products Department, Research and Development Division , 

Parlin, New Jersey 

synopsis 
Theoretical solutions for unsteady flow of a three constant Oldroyd fluid and a second 

order fluid under several different flow conditions of practical interest are obtained. The 
response of these fluids to suddenly applied external force is investigated in each case. 
Without using the stickdip boundary condition at the wall, it is possible to show that 
pressure oscillation occurs with both fluids under a certain cme. 

INTRODUCTION 
Steady state viscometric flow of non-Newtonian viscoelastic fluids such 

as polymer solutions at  moderate concentrations, as well as various polymer 
melts has been investigated hitherto both from theoretical and experi- 
mental paints of view. However, despite the fact that the most striking 
difference between Newtonian fluids and viscoelastic fluids is the pro- 
nounced time dependent response of the latter, only a few 
on the unsteady-state flow behavior of simple viscoelastic fluids have been 
made. 

In this paper, we make a brief review of the two different approaches, 
namely the differential rate type (e.g., an Oldroyd fluid) and the functional 
approach (e.g., a second order fluid) to formulating a constitutive equation 
for viscoelastic fluids. Following this we present the analyses of the un- 
steady flow behavior of these fluids under several different conditions of 
practical interest, and compare the response of these fluids in each case. 

MSCOELASTIC FLUIDS 

The Oldmyd Model 

According to Oldroyd,'+' one of the simplest generalized forms of the 
constitutive equation for viscoelastic fluids is 

where D/Dt denotes convected time derivative and 7 i k  and erk are covariant 
absolute tensors and XI, m, u1 are absolute scalars. When the convected 
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time derivative of a second order convariant tensor is transformed to a 
fixed coordinate system, eq. (1) becomes 

This equation reduces to that of Frolich and Sacklo (equivalent to an equa- 
tion with the first two terms on both sides) under the conditions where 
stress and strain rate are small. However, Oldroyd points out that the 
convected time derivatives of any arbitrary tensor, when transformed to a 
fixed coordinate system, depends on covariant or contravariant character 
of the tensor. 

b D 
Dt at 

This is shown by eq. (3). 

+ x W , m  b;--k--  + ~ t u , k b - - - m - - -  b::::::: + v"b,:Z:;- --m--- ___ I_ b:--k--- = - - 

+ xe,"b:::;::: - x'e,'b::& + We,"b:::fZ (3) 
The notation here follows the usual summation convention for repeated 
suffixes, x(c') denotes a sum of all similar terms, one for each covariant 
(contravariant) suffix, W is the weight of the tensor, uik and eik denote the 
components of the vorticity and rate-of-strain tensors, respectively. This 
means, for example if eq. (1) is written in terms of the contravariant tensor 
and subsequently transformed to a fixed coordinate system the resulting 
equation will have additional terms which do not appear in eq. (2). Old- 
royd' has shown that this objection can be removed by replacing the con- 
vected time derivative with Jaumann derivative. This is a time deriva- 
tive taken with respect to a coordinate frame which translates and rotates 
but does not deform with the fluid. Hence, covariant and contravariant 
equations of state formulated in terms of Jaumann derivatives are identical. 

It appears there is no a priori means of preferring one generalization method 
over the other. Agreement between predicted and experimental results 
seems to be the strongest reason for conferring status to any of the alterna- 
tives. In  this work, we are primarily interested in the limiting case where 
the strain rate and stress are small and eq. (1) reduces to a simple liricar 
form: 

The small strain rate and stress for which eq. (4) is valid has to be inves- 
tigated experimentally. 

A Second Order Fluid Model 

An alternate approach to formulating a constitutive equation for no11 - 
linear viscoelastic material is due to Rivlin and Ericksen," Green and 
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Rivlin,I2 and Coleman and N01l.l~ A detailed review of their works is 
available e lse~here. '~- '~  They assume that the material is isotropic in its 
virgin state and the stress is a hereditary function of the deformation 
tensor, and the strains developed in the fluid can be expanded by Taylor 
series in terms of strain rates and accelerations. If we consider only de- 
formation of long duration such that the relaxation moduli have all de- 
cayed to zero the stress field for a second order fluid can be written as, 14vL5 

or 

where I is the unit tensor, po is the viscosity, Je is the steady state shear 
compliance, and w is the normal stress coei3cient. B(1) is the deformation 
rate tensor and B(z) is the so-called second-order Rivlin-Ericksen tensor. 
In a rectangular Cartesian coordinate system, these tensors are 

B(1) = (" 8 Uu 0 ;), B(Z) = (is.. ;(UYY U,,, !) 
In view of the basic assumptions involved in obtaining the asymptotic 
form of a second order fluid, strictly speaking eq. (5)  should not be applied 
to any transient flow problem. 

The difference between the Oldroyd type and the functional type ap- 
proach was pointed out clearly by Metzner et al.I4 In  the former, a simple 
fluid model consisting of springs and dashpots imbedded in a convected co- 
ordinate system was assumed to represent the behavior of viscoelastic 
materials and if this did not agree with experiments higher order terms 
could be introduced. The latter approach assumes the stress in a visco- 
elastic media can be expressed as a polynomial in strain tensors. The co- 
efficients of the polynomial are functions of the velocity and acceleration 
gradient tensors as well as of material constants (or relaxation moduli). 
It is interesting to note that the latter approach works backwards. It 
seems under a certain limiting condition (e.g., compare eqs. 4 and 5)  a 
fairly straight forward relationship should exist between these two ap- 
proaches, but they are not obvious in general and await further experi- 
mental studies. 

In  what follows we will first obtain mathematical solutions for a given 
initial and boundary value problem with an Oldroyd fluid, and reduce them 
to the solutions of a second order fluid. 
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Constant Pressure Flow 
We will first consider the flow behavior of an Oldroyd fluid under a sud- 

denly applied constant pressure and obtain expressions for the instanta- 
neous volume flow rate and shear stress as functions of time. 

The equation of motion of an incompressible fluid in cylindrical co- 
ordinates together with eq. (4) are: 

Eqs, (6) and (7) are converted into a set of integro-differential equations by 
multiplying rJo(ptr) and rJ l (Cr~) ,  respectively, and integrating the resulting 
equations from zero to a, where a is the tube radius: 

where 

Let 

o = 1 ruJ0(lfr)cir, 7 = rTJl(ltr)dr l 
and assume no-slip condition at the wall, eqs. (8) and (9) reduce to a set of 
ordinary differential equations : 

d t  d o  
dt dt 

t + X I  - = - - l t p0 i7  - /&u1<* - 

where Tt is a root which satisfies Jo(Tta) = 0 

tial equation: 
From eqs. (10) and (ll), we obtain the following second order differen- 
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where uo = po/p the kinematic viscosity. It is interesting to note that 
eq. (12) is similar to that encountered in a forced vibration of an elastic 
material. 

Let a = 1/X1(1 + uouJt2) and P = br2vo/X1, then eq. (12) shows several 
possible solutions depending on the values of a ahd 8. It is noteworthy 
that vo/X1 is equal to the square of viscoelastic shear wave velocity. We 
will discuss two possible cases where a2 > 4@ and a2 < 4P. The first case 
corresponds to an overdamped motion, while the second tco an under- 
damped. For the overdamped motion, a solution for equation eq. (12) is: 

r 

The constants, C1 and CZ, are readily evaluated by using the initial cohdi- 
tions for velocity and shear stress which are both zero. They are: 

If these constants are substituted into eq. (13) and the resulting equatidn is 
inverse-transformed by means of the Hankel transform, l6 
fluid velocity as a function of time and radial distance. 
equation for velocity is 

we obtain the 
The resulting 

where the summation extends to all positive values of 16. 
noted that at steady state eq. (16) reduces to the Poiseuille flow: 

It should be 
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From eq. (16) the volumetric flow rate can be obtained readily, and the 
resulting equation in dimensionless form is 

1 t d a 2  - "1 (17) 
2 + 32 (rta)4 [I - e-at'a cosh 

The above equation suggests the volumetric flow rate will exhibit an over- 
shooting and will eventually reach the steady state. 

The shear stress, as a function of time as well as of radial position, can 
also be obtained by substituting eq. (13) into eq. (10) and by inversely 
transforming the resulting ? by means of the Hankel transform. The 
exact solution for the shear stress is quite complicated and will not be given 
here. However, if a2 > 4@, the shear stress can be approximated very 
closely by the following equation: 

where the constants, C1 and Cz are given by eqs. (14) and (15), respec- 
tively. 

For the case of an underdamped motion, the solution for equation 10, 
subject to the same initial and boundary conditions, is 

where the constants, C1 and CZ are also given by eqs. (14) and (15). Eq. 
(19) is similar to that of the overdamped case except the hyperbolic func- 
tions are replaced by the trigonometric functions. Therefore, the volu- 
metric flow rate, in dimensionless form, is: 

Substitution of eq. (19) into (10) and inversely transforming the result- 
ing ?, an approximate expression for the shear stress can be obtained 
readily. 
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The instantaneous volumetric flow rate per unit pressure gradient for 
several different values of XI and u1 are computed using eq. (17), and the 
results are shown in Figure 1. The overdamped case seems to agree 

I I I 
0 1 2 .3 

-1 * 2 
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l.o S t e a d y  S t a t e 1  

0 . 9 - 
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t (Time in sec.) 

Fig. 1. Transient response of Oldroyd fluids to suddenly applied constant pressure. 
XL) case 1, 7.5 sec and case 2, 1.6; u,) case 1,6.0 sec and case 2,0.94; u 0 )  case 1, 104cm2/ 
sec and case 2, 920; a)  case 1, 1.0 and case 2, 1.0. 

qualitatively with the experimental results observed by Il.leissner” and 
Lupton and Regester. l8 According to Oldroyd17 there are good reasons, 
both theoretical and experimental, for taking hl > ul. Under this condi- 
tion, we have a2 > 4p and the solutions for the overdamped motion seem 
to be more realistic. 

The rheological parameters used for computations throughout this work 
(except Case 2 of Fig. 2 and Case 3 of Fig. 3) are experimental values re- 
ported by Carreau et al.l9 It should be mentioned here that the param- 
eters chosen for the two cases are not experimental and the resulting 
transient behavior may not be realistic. Different experimental values for 
a given parameter are chosen to find out their influence on the transient 
behavior. 
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Fig. 2. Transient response of second order fluids l,o suddexdy applied premure. A,) 
case 1, 1.58 and case 2, 1.2; ug) case 1, 920 and case 2, 10; a )  case 1, 1.0 arid case 2, 1.5. 
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Fig. 3. Transient response of Oldroyd fluids in a constant rate flow. A,) case 1, 1.0; 
case 2, 0.18; case 3, 1.0; ~ 1 )  case 1, 0.01; case 2, 0.05; case 3, 0.01; uo) case I, 2500; case 
2, 100; case 3, 25; a )  case 1, 1.0; case 2, 0.1; case 3, 0.5. 

Let us consider a second order fluid subject to the same deformation. If 
we take XI = poJc and u1 = 0 in eq. (4), the tangential stress component re- 
duces to eq. (5). From eq. (12), we find the velocity field of this fluid is 
governed by the following equation: 
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The solution of the above equation would be identical to that of the under- 
damped case given by eq. (19), if a and /? were replaced respectively by 
(cc0Je)-' and lr2vo/PJe. The velocity and stress components can be ob- 
tained readily from this equation by going through the transformations 
similar to the previous case. Only the volumetric flow rate is given here in 
dimensionless form: 

where 4X11f2v0 > 1. Eq. (23) was computed using several different 
rheological parameters and the result is shown in Figure 2. We find t.he 
equation is highly unstable and oscillates severely in the early stage of the 
flow and finally reaches steady state. 

Constant Rate Flow 

We will consider next the constant rate flow such as the extrusion of 
polymer melts by using an Instron rheometer and obtain an expression for 
the force as a function of time in order to maintain the constant flow rate. 

Etter and Schowalterl investigated this problem for startup or shut-down 
(recoil) of an Oldroyd fluid. In  the present work, the problem is investi- 
gated from a different point of view. 

Since we are interested in obtaining an equation for the change in pressure 
as a function of time during the constant rate flow, we multiply eq. (6) by 
21t~dr and integrate the resulting equation from 0 to a: 

= a  
2 r p  rUdr = - (E) J27rrdr + 2 r  ( T T ) ~ T  (24) 

at o ax 

The left side term of the above equation is equal to zero, because the fluid 
is assumed to be incompressible and flows at  a constant rate. Eq. (24) 
reduces to 

Eq. (25) suggests that the time dependence of the pressure gradient is re- 
lated with the shear stress a t  the wall. An expression for the shear stress 
as a function of radial distance and time can be obtained by solving eqs. (6) 
and (7). 
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The stress equation of motion in the direction of flow is given by eq. (6) 
and the pressure gradient appearing in the equation can be eliminated by 
gross differentiation with respect to r.  Thus we have 

p -  = - 

Eqs. (7) and (26) should be solved simultaneously. Introducing the di- 
mensionless variables (defined in the nomenclature) into these equations, 
we obtain the following set of equations: 

r * + *  b7* = -(- 1 bU* 
at 4 br* + a%) 

These equations can be solved for U* and T* by using the method of 
separation of variables. 

Let 

U* = el(t*)Rl(r*) + 2(1 - r*2) 

T *  = &(t*)Rz(t*) - r* 
(29) 

(30) 

and substituting these into eqs. (27) and (28), we obtain 

where the prime denotes partial differentiattion with respect to the per- 
tinent variables, and a, and @, are eigenvalues to be determined later. 
From eqs. (31) and (32) we obtain solutions for R and 6: 

R2 = CIJ1(G,r*) (33) 

(34) 

and 
= e-.W* [CBeB-'* + Ce-Bm'*J 

where 

* In reference 1, there is a minus sign in front of p,e, and 8, turns out to be an imag- 
inary eigenvalue. The eigenvalues in this work are all positive. 
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and J1 is the Bessel function of the first kind and the first order. Since 

02 = - (;n)2 el' 

from eq. (34) we obtain 

By substituting eqs. (33) and (37) into (30), we obtain an expression for the 
dimensionless shear stress 

T* = (H)2e-Amt*[c1c3(& - Bn)eBnt* 

The initial condition at  t* = 0 requires that T* = 0 for all values or r*, 
and we obtain 

+ C1C4(An - Bn)e-Bnz*]J1(8nr*) - r* (W 

From eq. (32), we find that 

R1 = s$ dr* 

where CS is a constant. By using no-slip boundary condition, U* = 0 
at  r* = 1, for all values of t*, we find C5 = 0 and the ratio of constants tyn 

to on are the eigenvalues which must satisfy J,,((Y,//~~) = 0. Substituting 
eqs. (34) and (40) into eq. (29) we obtain an expression for the dimension- 
less velocity 

The initial condition, U* = 0 at  t* = 0 for all values of T * ,  reduces the 
above equation to 

(42) 
1 c - [C,C3 + C1C4]J,(Gnr*) = 2(1 - r*2) 

n d n  

From eqs. (39) and (42) the constants Cl.C3 and C1.C4 can be obtained 
readily by using the orthogonal transformation of the Bessel function. 
These constants are 
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Thus substitution of these constants into eqs. (38) and (41) gives desired 
solutions for shear stress and velocity, respectively. I t  is of interest to see 
what type of motion the fluid element at  the center of the tube will experi- 
ence as a function of time. Substitution of the constants given by eqs. 
(43) and (44) into (41) and evaluating the resulting equation at r* = 0, we 
obtain 

e-A,f* 

U*(O,t*) = 2 - c -- 
n JI (an) 

Examination of eq. (45) shows it is not necessary to know the individual 
values of a, and Bn as long as their ratio is known. The equation can fur- 
ther be simplified depending on whether Bn is positive or imaginary value. 
In the former case, the fluid element will experience over-damped motion, 
while in the latter case an underdamped oscillatory motion. 

Since we are interested in obtaining an expression for the pressure gradi- 
ent as a function of time, eq. (38) is substituted into eq. (25) with the 
constants, and the resulting equation reduces to 

For the overdamped case, eq. (46) can be further simplified to: 

cash Brit* + ($ - An) X Brit*) (47) 
Bn 

For the underdamped case the equation reduced to: 

Eqs. (47) and (48) suggest that, for a given tube size, if we plot the ratio of 
extrusion forces to extrusion velocity as a function of time a t  a constant 
temperature the data should fall on a single line. 

The dimensionless stress appearing on the left side of eq. (47) is computed 
as a function of dimensionless time and the result is shown in Figure 3. It 
should be noted that the rheological parameters for Case 3 are such that the 
shear wave velocity is 5 cm/sec and this does not seem to be realistic. 
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Let us consider again a second order fluid subject to the same initial and 
boundary conditions. If we let u1 = 0 while maintaining the other dimen- 
sionleas variables the same, the constanb defined by eqs. (35) and (36) 
become : 

1 An = - 
2 

Solutions for the dimensionless velocity and shear stress can be obtained 
readily by going through the same mathematical procedure. Only the final 
results are given here : 

t* (Relative time) 

Fig. 4. Oscillating pressure predicted for Becond order fluids in a constant rate flow. XI) 
m e  1, 7.2 and case 2, 0.1; ug) case 1, 104 and case 2, 13.7; a) case 1,l.O and case 2, 1.0. 
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An expression for the dependence of the pressure gradient on time is ob- 
tained by substituting eq. (50) into eq. (25) : 

where the rheological parameters in eqs. (49) and (50) satisfy 411~h16,~ > u2 
for all values of 6,. It is interesting to note that eq. (51) clearly indicates 
the pressure required to maintain the constant flow rate oscillates with de- 
creasing amplitude and finally reaching a steady state. Figure 4 shows the 
dependence of pressure oscillation on rheological parameters. It should be 
noted that eq. (50) was obtained by using the no-slip boundary condition 
a t  the wall. One of the commonly accepted explanations for the oscillating 
flow (or the so-called melt fracture) encountered in polymer melt extrusion 
is the stick-slip mechanism a t  the wall,l* and this is believed to cause the 
oscillating pressure. Eqs. (48) and (51) show the pressure oscillation even 
in the absence of the stick-slip a t  the wall may also be possible. 

Couette Flow 

Finally we investigate the deformation of these fluids under a simple 
shear between two infinite parallel plates when one of the plates is suddenly 
pulled parallel to the other a t  a constant rate. We will obtain an expression 
for the force required as a function of time. The stress equation of motion, 

a u  dr 
at b y  

p -  = -  

may be solved simultaneously with eq. (4) by using the finite Fourier sine 
and cosine transform methods. We multiply both sides of eqs. (52) and 
(4) by sin ( n ~ y / H )  and cos ( n a y / H ) ,  respectively, and integrate resulting 
equations from zero to H ,  where H is the distance between two plates: 

p s" U sin (y) dy = " d r  by sin n q  3- d y  
at 0 

(53) 

n q  s," r cos %- dy + XI 

H 
n ry 
H /Lou1 s," y cos - dy (54) 
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Using the no-slip boundary conditions, eqs. (53) and (54) reduce to 

do n?r 
p - = - -  dt H ?  (55) 

(56) + x1- = po (-1)"V + - 0 + g MLJl 
dt di [ n* H 1 n?r 

where 

a n d n =  1,2, ... 
Substituting eq. (56) and (55), we obtain the following differential equation 
for fluid velocity: 

= LJOV ('") (57) 
HA1 

The similarity between eqs. (12) and (57) is obvious. 
(57) is 

The solution of eq. 

The constants in eq. (58) can be evaluated readily by using the two 
These constants initial conditions for velocity and stress components. 

are : 

(-l)"+2V A ,  + B,  
(n?r/H) 

c7= -- 

c6 = 

(-1)"V A " -  B, 
(n*lH) ( 2Bn ) 

Substituting these into eq. (58), we obtain 
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The fluid velocity is obtained by inverse transformation of eq. (59) : 

Fielder and Thomas6 solved essentially the same problem by using the 
Laplace transform method. However, they used an integral form of the 
constitutive equation based on the relaxation theory of linear viscoelasticity 
with a simple exponential function as a relaxation function. From eq. 
(55) ,  we obtain 

and the inverse transformation of the above equation yields an expression 
for the shear stress: 

The force required per u i t  area of the plate is 

x [ e - ( A n + B n ) t  - e - ( A n - - B d f  1 + [I - e-t'X1] (62) 

Eq. (62) shows either over-damped or under-damped case depending on 
whether B,  is positive or imaginary respectively. 

Finally let us consider a second order fluid subjected to the same simple 
shear deformation. If we put u1 = 0 in eq. (57), we find the velocity field 
is governed by the following differential equation: 

The solution of eq. (63) is 

0 = e-t/2x1[Ca cos B,t + CS sin B,t] 

where 

l]l/a 
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The constants appearing in eq. (64) are evaluated by using the initial con- 
ditions for velocity and stress. By inverse transformation of the resulting 
equations, solutions for the dimensionless velocity and shear stress can be 
obtained. We show here only the final solutions. 

1 
2X&n 

x { 1 - e-t/zAi [cos B,t + - sin Bat]}  X sin (y) (65) 

The shear stress is 

where the rheological parameters satisfy 4NoX1(nr/H)~ > 1 for all values 
of n. Eq. (66) is computed using several different values of relaxation 
time. 

The general behavior of a differential equation, b,U = bu2U - bubrb,U 
which results from coupling eqs. (5) and (52), was first studied by Cole- 
man, D d n ,  and MuzeP from the view point of existence theorem, and 
they pointed out existence of one solution at most for the initial and 
boundary value problem discussed here. 

The authors are indebted to the keen interest shown by the Research and Develop- 
ment Division, Photo Products Department, E. I. du Pont de Nemours & &., Inc. in 
publishing this work. 
They are also indebted to Dr. W. Philippoff and Prof. W. R. Schowalter for their 

comments and suggestions. 

Nomenclatnre* 

tube radius 
distance between two plates 
Bessel function of first kind of order n 
volumetric flow rate 
radial distance 

time 
t/Xl, dimensionless ratio of time 
velocity in xdirection 

average velocity 
directional coordinates 

r /a  

UIV 

* Only those which are not defined clearly in the text. 
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Greek Letters 

= eigen values 
y = a/2(voX1)”Z 
6, = an/& 
rik = stress tensor 
r* = r / r ,  relative stress 
7, = steady state wall shear stress 
X1 = relaxation time 
u,, = kinematic viscosity 
u1 = retardation time 
p = density 
Q, = -bP/dz ,  pressure gradient 
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